Deswita Alifia Damayanti

Perempuan, 8 tahun

Kudus, Indonesia

SELAMAT DATANG DI BLOG PERJALANANKU, MY LIFE MY BLOG adalah blog yang menceritakan semua yang saya suka, Inspirasi, dan Motivasi.Selamat bergabung di blog saya, semoga bisa jadi motivasi dan inspirasi bagi anda yang membacanya Semoga Bermanfaat.

Visit My Blog :
=>meditasi09.blogspot.com
=>deswitaku.blogspot.com
=>sangsurya09.blogspot.com
=>deswita16@gmail.com
::
Start
Deswita Alifia D™ Vivi
Shutdown

Navbar bawah

Search This Blog

Kamis, 05 April 2012

Automatic Battery Charger Circuit

Here is a 12 volt Lead Acid battery charger that shut off the charging process once the battery attains full charge. This prevents overcharging of the battery so that, the charger can be left unattended. If the terminal voltage of the battery reduces below the set level, say 13.5 volts, the circuit automatically turns on to the charge mode.
Charging current as well as the power to the circuit is obtained from a 0-18 volt 2 Ampere step-down transformer. The low voltage AC is rectified by the bridge rectifier comprising D1 through D4 and made ripple free by the smoothing capacitor C1. For charging purpose, 18 volt DC is used while to power the circuit, 9 volt regulated DC from IC1 is used. IC2 (CA3140) is used as a simple voltage comparator to drive the relay. Its inverting input gets 4.7 volt reference voltage from the Zener ZD, while the non inverting input gets an adjustable voltage through the POT VR1.So normally, the inverting input pin 2 gets higher voltage from the Zener (as adjusted by VR1) and output of IC2 remains low. T1 then remains off keeping the relay off. The charging current passes to the battery through the NC (Normally Connected) contacts of the relay.
When the terminal voltage of the battery increases to 13.5 volts, pin 3 of IC2 gets higher voltage than pin2 and the output of IC2 becomes high. This activates the relay and the contacts break. Charging current to the battery cut off and the relay remains as such since the battery voltage(13.5V or more) keeps the voltage at pin3 of IC2 is higher than that of pin 2.

Setting: Before connecting the battery, set the input voltage to IC2 using a fully charged battery or variable power supply. Turn the switch S1 to the off position and switch on the power. Then connect a fully charged battery/ variable power supply to test points TP observing polarity. Measure the input voltage to pin 3 of IC2.

Slowly adjust VR1 till the input voltage to pin 3 of IC2 raises to 5 volts. At this point, relay should energize and Red LED turns on. Then connect the battery for charging and switch on S1. If the battery takes charge, current to pin 3 of IC2 will be low since most of the current drain occurs into the battery. This keeps the relay off. When the battery voltage increases above 13.5 volts, no more current passes into the battery, so that the voltage at pin3 of IC2 rises and relay turns on.

0 komentar:

Energy Saving Mode
Gunakan Mouse untuk Keluar Mode Energy Saving